
ORNL is managed by UT-Battelle
for the US Department of Energy

Intro to C Programming

Tom Papatheodore
Oak Ridge Leadership Computing Facility
Oak Ridge National Laboratory

June 26, 2018

C Programming Language

• General-purpose programming language initially developed by Dennis Ritchie at
Bell Laboratories

• Compiled Language
– A compiler is a program used to convert high-level code (like C) into machine code

• Many operating systems, as well as Perl, PHP, Python, and Ruby, are written in
C.

A Simple C Program (01_simple_c_program/simple.c)

#include <stdio.h>

int main(){

int a = 3;

printf(“The value of this integer is %d\n”, a);

return 0;

}

A Simple C Program

#include <stdio.h>

int main(){

int a = 3;

printf(“The value of this integer is %d\n”, a);

return 0;

}

C preprocessor directive telling the compiler to
include contents of the header file in angle brackets.

A Simple C Program

#include <stdio.h>

int main(){

int a = 3;

printf(“The value of this integer is %d\n”, a);

return 0;

}

Declaration of a function called main, which is where
execution of the program begins. The “int”
indicates that the function will return an integer
value.

More on functions later…

A Simple C Program

#include <stdio.h>

int main(){

int a = 3;

printf(“The value of this integer is %d\n”, a);

return 0;

}

These curly braces indicate the beginning and end of
the main function.

A Simple C Program

#include <stdio.h>

int main(){

int a = 3;

printf(“The value of this integer is %d\n”, a);

return 0;

}

Defines an integer called “a” and assigns it a value
of 3.

More on data types soon…

A Simple C Program

#include <stdio.h>

int main(){

int a = 3;

printf(“The value of this integer is %d\n”, a);

return 0;

}

A semicolon is used to indicate the end of each
statement.

A Simple C Program

#include <stdio.h>

int main(){

int a = 3;

printf(“The value of this integer is %d\n”, a);

return 0;

}

A function, called printf, that sends formatted
output to stdout (typically the terminal from which the
program was run).

This is one of the functions defined in the stdio.h
header file.

More on printf soon…

A Simple C Program

#include <stdio.h>

int main(){

int a = 3;

printf(“The value of this integer is %d\n”, a);

return 0;

}

And, of course, a semicolon to indicate the end of
the statement.

A Simple C Program

#include <stdio.h>

int main(){

int a = 3;

printf(“The value of this integer is %d\n”, a);

return 0;

}
Return value “returned” to the run-time environment.

Typically, a value of 0 indicates a normal/successful
exit.

A Simple C Program – Ok, let’s compile and run

$ cc simple.c

$ ls
a.out simple.c

$ aprun –n1 ./a.out
The value of this integer is 3

Compile and link file into executable

Run program – launched with aprun

Executable is named a.out by default

• Using the cray compiler wrapper cc
instead of, say, pgcc directly

A Simple C Program – Ok, let’s compile and run

$ cc –o simple.exe simple.c

$ ls
simple.exe simple.c

$ aprun –n1 ./simple.exe
The value of this integer is 3

Compile and link file into executable

Run program

-o is a compiler flag that allows you to
name the executable

Variables and Basic C Data Types
Variables are named storage areas
• For example, int a = 5 creates a variable (storage area in memory) named “a” and saves the

value of 5 in that memory location.
– Variables of different data types occupy different amounts of memory and can store different ranges of values

• Must be declared before use.

Basic C Data Types

Name Type Range of Values Size (B)
char Character ASCII characters 1
int Integer -2,147,483,648 to 2,147,483,647 4
float Decimal (precision to 6 places) 1.2e-38 to 3.4e38 4
double Decimal (precision to 15 places) 2.3e-308 to 1.7e308 8

Formatted Output with printf Function
Example 1:
printf(“Hello World”);

The Result of Example 1 would be: Hello World

Example 2:
printf(“Hello World\n”);

The Result of Example 2 would be: Hello World (with a new line)

Formatted Output with printf Function
Example 3:
int i = 2;
printf(“The value of the integer is %d\n”, i);

The Result of Example 3 would be: The value of the integer is 2

Example 4:
float x = 3.14159;
printf(“The value of the float is %.2f\n”, x);

The result of Example 4 would be: The value of the float is 3.14

String to print, with format tags

format tag

Variable whose value is used in
format tag

format tag

String to print, with format tags

Variable whose value is used in
format tag

Formatted Output with printf Function

Name Type Range of Values Format Specifier
char Character ASCII characters %c
int Integer -32,768 to 32,767 <or>

-2,147,483,648 to 2,147,483,647
%d

float Decimal (precision to 6
places)

1.2e-38 to 3.4e38 %f

double Decimal (precision to 15
places)

2.3e-308 to 1.7e308 %f

There are many options to format output using the printf function. Feel free to Google :)

C Arrays

A[0] A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8] A[9]

int A[10]; // declares an array of 10 integers

Data structure that holds a
fixed number of data
elements of a specific type

C Arrays

7 32 256 17 -20 22 1 0 59 -2

A[0] A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8] A[9]

int A[10]; // declares an array of 10 integers

A[0] = 7; // assigns values to the array elements
A[1] = 32;
A[2] = 256;
A[3] = 17;
A[4] = -20;
A[5] = 22;
A[6] = 1;
A[7] = 0;
A[8] = 59;
A[9] = -2;

printf(“The value of A[3] = %d\n”, A[3]);

The result would be:
The value of A[3] = 17

Data structure that holds a
fixed number of data
elements of a specific type

Each element is

4 bytes for int

Loops

• While Loop
• Do-While Loop
• For Loop

While Loops

while(expression){

// Execute loop statements until expression evaluates to 0

}

expression: Evaluated before each iteration

03_loops/while_loop/while_loop.c

#include <stdio.h>

int main(){

float x = 1000.0;

while(x > 1.0){
printf(”x = %f\n", x);
x = x / 2.0;

}

return 0;
}

$ cc –o while_loop.exe while_loop.c

$ aprun –n1 ./while_loop.exe
x = 1000.000000
x = 500.000000
x = 250.000000
x = 125.000000
x = 62.500000
x = 31.250000
x = 15.625000
x = 7.812500
x = 3.906250
x = 1.953125

Do-While Loops

do{

// Execute loop statements until expression evaluates to 0

}while(expression)

expression: Evaluated after each iteration

For Loops

for(initialization; conditional_expression; iteration){

// loop statements

}

conditional_expression: Evaluated before body of loop

iteration: Evaluated after body of loop

03_loops/for_loop/for_loop.c

#include <stdio.h>

int main(){

int N = 10;
int sum = 0;

for(int i=0; i<N; i++){

sum = sum + i;
printf(”Iteration: %d, sum = %d\n", i, sum);

}

return 0;

}

$ cc –o for_loop.exe for_loop.c

$ aprun –n1 ./for_loop.exe
Iteration: 0, sum = 0
Iteration: 1, sum = 1
Iteration: 2, sum = 3
Iteration: 3, sum = 6
Iteration: 4, sum = 10
Iteration: 5, sum = 15
Iteration: 6, sum = 21
Iteration: 7, sum = 28
Iteration: 8, sum = 36
Iteration: 9, sum = 45

i++ is same as i = i + 1

Continue Statement
When a continue statement is encountered within a loop, the remaining statements in the
loop body (after the continue) are skipped and the next iteration of the loop begins.

03_loops/continue/continue.c

#include <stdio.h>

int main(){

for(int i=0; i<10; i++){

if(i == 7){
continue;

}

printf("Loop iteration: %d\n", i);
}

return 0;
}

$ cc –o continue.exe continue.c

$ aprun –n1 ./continue.exe
Loop iteration: 0
Loop iteration: 1
Loop iteration: 2
Loop iteration: 3
Loop iteration: 4
Loop iteration: 5
Loop iteration: 6
Loop iteration: 8
Loop iteration: 9

Break Statement
When a break statement is encountered within a loop, the loop is terminated.

03_loops/break/break.c

#include <stdio.h>

int main(){

for(int i=0; i<10; i++){

if(i == 7){
break;

}

printf("Loop iteration: %d\n", i);
}

return 0;
}

$ cc –o break.exe break.c

$ aprun –n1 ./break.exe
Loop iteration: 0
Loop iteration: 1
Loop iteration: 2
Loop iteration: 3
Loop iteration: 4
Loop iteration: 5
Loop iteration: 6

Operators

Although we’ve been using them
already, let’s take a closer look at
operators…

Arithmetic Operators

A op B
+ Add

- Subtract

* Multiply

/ Divide

% Modulus

A++ Increment (same as A = A + 1)

B-- Decrement (same as B = B - 1)

int A = 10;
int B = 2;

A + B; // would give 12

A - B; // would give 8

A * B; // would give 20

A / B; // would give 5

A % B; // would give 0 Remainder after division of B into A

// would give 11

// would give 1

Relational Operators

A op B
== Equal to

!= Not equal to

> Greater than

< Less than

>= Greater than or equal to

<= Less than or equal to

int A = 10;
int B = 2;

A == B; // would give 0 (false)

A != B; // would give 1 (true)

A > B; // would give 1 (true)

A < B; // would give 0 (false)

A >= B; // would give 1 (true)

Tests relationship between two operands
• If true, returns 1
• If false, returns 0

A <= B; // would give 0 (false)

Assignment Operators

=

+=

-=

*=

/=

%=

int A = 10;
int B = 2;

A = B; // would assign a value of 2 to A

A += B; // would assign a value of 12 to A (Same as A = A + B)

A -= B; // would assign a value of 8 to A (Same as A = A - B)

A *= B; // would assign a value of 20 to A (Same as A = A * B)
A /= B; // would assign a value of 5 to A (Same as A = A / B)
A %= B; // would assign a value of 10 to A (Same as A = A % B)

Logical Operators

&& And (true if both true)

|| Or (true if at least 1 is true)

! Not (returns the opposite)

int A = 10;
int B = 2;
int C = 5;

((A > B) && (B == C)); // would give 0 (false)

((A > B) || (B == C)); // would give 1 (true)

!(B == C); // would give 1 (true)

Used in conjunction with relational
operations for decision making

If statements

Let’s take a look at if statements …

If Statements

if(condition_1){
// Execute these statements if condition_1 is met

}
else if(condition_2){

// Execute these statements if condition_2 is met
}
else{

// Execute these statements if other conditions are not met
}

Once a condition is met, the statements associated with that section are executed
and all other sections are ignored.

04_if_statements/if_statement/if_statements.c

#include <stdio.h>

int main(){

int i = 1;

if(i < 1){
printf(”i = %d (i < 1)\n", i);

}
else if(i == 1){

printf(”i is equal to 1\n");
}
else{

printf(”i = %d (i > 1)\n", i);
}

return 0;
}

$ cc –o if_statement.exe if_statement.c

$ aprun –n1 ./if_statement.exe
i is equal to 1

Functions

• Standard Library Functions
• User-Defined Functions

A reusable block of code that performs a specific task

Standard Library Functions
C built-in functions that can be accessed with appropriate #include statements

We have already encountered the printf function, which is can be used by including
the stdio.h header file

There are many other C standard library functions defined in other header files
• math.h, stdlib.h, string.h, etc.

These functions should be used whenever possible in order to save time (why re-invent
the wheel) and because they are well-tested and portable.

User Defined Functions

return_type function_name(type1 arg1, type2 arg2, ...){

// Function Body

}

Let’s see some examples …

05_functions/add_two_numbers/add_two_numbers.c
#include <stdio.h>

// Function Definition
int add_numbers(int i, int j){

int result;
result = i + j;

return result;
}

// Main Function
int main(){

int num1 = 3;
int num2 = 7;

int sum = add_numbers(num1, num2);
printf("The sum of num1 and num2 is %d\n", sum);

return 0;
}

$ cc –o add_two_numbers.exe add_two_numbers.c

$ aprun –n1 ./add_two_numbers.exe
The sum of num1 and num2 is 10

05_functions/add_two_numbers/add_two_numbers.c
#include <stdio.h>

// Function Definition
int add_numbers(int i, int j){

int result;
result = i + j;

return result;
}

// Main Function
int main(){

int num1 = 3;
int num2 = 7;

int sum = add_numbers(num1, num2);
printf("The sum of num1 and num2 is %d\n", sum);

return 0;
}

$ cc –o add_two_numbers.exe add_two_numbers.c

$ aprun –n1 ./add_two_numbers.exe
The sum of num1 and num2 is 10

Formal parameters/arguments

Actual parameters/arguments

05_functions/change_value/change_value.c

#include <stdio.h>

// Function Definition
void change_number(int i){

i = 2;
printf("Inside the function, the number's value is %d\n", i);

}

// Main Function
int main(){

int number = 1;
printf("\nBefore calling the function, number = %d\n", number);

change_number(number);

printf("After calling the function, number = %d\n\n", number);

return 0;
}

$ cc –o change_value.exe change_value.c

$ aprun –n1 ./change_value.exe
Before calling the function, number = 1
Inside the function, the number's value is 2
After calling the function, number = 1

Wait.
What’s going on here?
The values of the actual
arguments are copied to the formal
arguments.

• So changes to the formal arguments do
not affect the actual arguments.

• This is called “call by value”

ASIDE: Variable Addresses and Pointers

Variable Addresses

#include <stdio.h>

int main(){

int i = 1;

printf("The value of i: %d\n", i);
printf("The address of i: %p\n", &i);

return 0;
}

& (reference operator) – gives the address of the variable
%p – format tag to
print address

The memory address of a variable can be
referenced using the reference operator, &

$ cc –o variable_addresses.exe variable_addresses.c

$ aprun –n1 ./variable_addresses.exe
The value of i: 1
The address of i: 0x7fff3e720c2c (this address will vary)

Pointer Variables
#include <stdio.h>

int main(){

float x = 2.713;
float *p_x;

p_x = &x;

printf("The value of x: %f\n", x);
printf("The address of x: %p\n", &x);
printf("The value of p_x: %p\n", p_x);
printf("The value stored in the memory address stored in p_x: %f\n", *p_x);

return 0;
}

* used to declare pointer

There are special variables in C to store memory
addresses: pointers

$ cc –o pointers_1.exe pointers_1.c

$ aprun –n1 ./pointers_1.exe
The value of x: 2.713000
The address of x: 0x7fff5ce8aa68
The value of p_x: 0x7fff5ce8aa68
The value stored in the memory address stored in p_x: 2.713000

The pointer is assigned the value of the memory
address of x

* (dereference operator) – gives the
value stored at a memory address

This is different use

of * than above!

06_addresses_and_pointers/pointers_1/pointers_1.c

Pointer Variables

#include <stdio.h>

int main(){

float x = 2.713;
float *p_x;

p_x = &x;

printf("The value of x: %f\n", x);
printf("The address of x: %p\n", &x);
printf("The value of p_x: %p\n", p_x);
printf("The value stored in the memory address stored in p_x: %f\n", *p_x);

*p_x = 3.141;

printf(”\nThe value of x: %f\n", x);

return 0;
}

$ cc –o pointers_2.exe pointers_2.c

$ aprun –n1 ./pointers_2.exe
The value of x: 2.713000
The address of x: 0x7fff5ce8aa68
The value of p_x: 0x7fff5ce8aa68
The value stored in the memory address stored in p_x: 2.713000

The value of x: 3.141000

* (dereference operator) – gives the
value stored at a memory address

* (dereference operator) – also
allows you to change the value
stored at that memory address

06_addresses_and_pointers/pointers_2/pointers_2.c

Ok, back to functions …

05_functions/change_value/change_value.c

#include <stdio.h>

// Function Definition
void change_number(int i){

i = 2;
printf("Inside the function, the number's value is %d\n", i);

}

// Main Function
int main(){

int number = 1;
printf("\nBefore calling the function, number = %d\n", number);

change_number(number);

printf("After calling the function, number = %d\n\n", number);

return 0;
}

$ cc –o change_value.exe change_value.c

$ aprun –n1 ./change_value.exe
Before calling the function, number = 1
Inside the function, the number's value is 2
After calling the function, number = 1

In order to change the value of an actual argument,
we must pass its memory address, not just its

value.

(call by reference)

05_functions/change_value_correct/change_value_correct.c

#include <stdio.h>

// Function Definition
void change_number(int *i){

*i = 2;
printf("Inside the function, the number's value is %d\n", *i);

}

// Main Function
int main(){

int number = 1;
printf("\nBefore calling the function, number = %d\n", number);

change_number(&number);

printf("After calling the function, number = %d\n\n", number);

return 0;
}

$ cc –o change_value_correct.exe change_value_correct.c

$ aprun –n1 ./change_value_correct.exe
Before calling the function, number = 1
Inside the function, the number's value is 2
After calling the function, number = 2

Remember, the * used declare the pointer
variable, i, in the function argument is
different than the * used within the body of
the function. To be clear,

int *i
• The * here is simply because this is how

you declare a pointer to an integer.

*i = 2
printf(“ … %d\n”, *i)
• The * in these statements is the

dereference operator, which allows you to
access the value of the variable
associated with the memory address.

“Call by reference”

Memory Allocation

• Stack
– Region of computer memory that stores temporary variables

• When a new function is called the variables are created on stack

• When the function returns, the memory is returned to the stack (LIFO)

– Memory managed for you
– Variables can only be accessed locally
– Variable size must be known at compile time

• Heap
– Region of compute memory for dynamic allocation

• No pattern to allocation/deallocation (user can do this any time)

– Memory managed by user
• E.g. using malloc(), free(), etc.

– Variables can be accessed globally
– Variable size can be determined at run time

07_memory_allocation/static.c

#include <stdio.h>

int main(){

// Statically-allocated array of floats
int N = 5;
float f_array[N];

for(int i=0; i<N; i++){
f_array[i] = 0.25*i;

}

for(int i=0; i<N; i++){
printf("f_array[%d] = %f\n", i, f_array[i]);

}

return 0;
}

$ cc –o static.exe static.c

$ aprun –n1 ./static.exe
f_array[0] = 0.000000
f_array[1] = 0.250000
f_array[2] = 0.500000
f_array[3] = 0.750000
f_array[4] = 1.000000

07_memory_allocation/dynamic.c

#include <stdio.h>
#include <stdlib.h>

int main(){

// Dynamically-allocated array of floats
int N = 5;
float *f_array_dyn = malloc(N*sizeof(float));

for(int i=0; i<N; i++){
f_array_dyn[i] = 0.25*i;

}

for(int i=0; i<N; i++){
printf("f_array_dyn[%d] = %f\n", i, f_array_dyn[i]);

}

free(f_array_dyn);

return 0;
}

$ cc –o dynamic.exe dynamic.c

$ aprun –n1 ./dynamic.exe
f_array_dyn[0] = 0.000000
f_array_dyn[1] = 0.250000
f_array_dyn[2] = 0.500000
f_array_dyn[3] = 0.750000
f_array_dyn[4] = 1.000000

Allocates N*sizeof(float) bytes
of memory and returns pointer to the
block of memory

Releases block of memory associated with f_array_dyn

Additional Resources

• Exercises that go with these slides (as well as some examples to work through)

– https://github.com/olcf/intro_to_C

• Other sites

– https://en.cppreference.com/w/c/language

– https://en.wikibooks.org/wiki/C_Programming

– https://stackoverflow.com/questions/tagged/c

– Many other tutorials can be found by googling “c programming language”

• Website with many practice problems

– https://projecteuler.net/

https://github.com/olcf/intro_to_C
https://en.cppreference.com/w/c/language
https://en.wikibooks.org/wiki/C_Programming
https://stackoverflow.com/questions/tagged/c
https://projecteuler.net/

Examples Used in These Slides

The examples used in these slides can be obtained from OLCF’s GitHub:
$ cd $MEMBERWORK/trn001

$ git clone https://github.com/olcf/intro_to_C.git

Grab a node in an interactive job:

Launch executables with aprun command:

$ qsub -I -A TRN001 -l nodes=1,walltime=2:00:00
qsub: waiting for job 4109771 to start
qsub: job 4109771 ready

$ cd $MEMBERWORK/trn001 This is where we cloned the intro_to_C repository.

$ aprun –n1 ./a.out

Since jobs must be launched from Lustre

Thank You.

Bonus Slides

Compiled vs Interpreted Language
In both cases, a high-level language must be converted into lower-level instructions
that the processor can understand
• Interpreted Language (e.g. Python)

– Parse commands in high-level language, translate each command into machine code, then execute each command
– Typically slower due to

• Translation occurring while code is being run

• Redundant translations (e.g. loops)

• No global optimization (e.g. pipelining work)

– Easier interactive code development (simply edit code and run)

• Compiled Language (e.g. C, Fortran)
– Compiler parses “source code” files in high-level language and translate into an executable (machine code).
– Typically faster due to

• Executable can be run without need for “in-line” translation

• Reduce redundant translations

• Allows global optimizations (e.g. compiler can determine which instructions come next, so can ”pre-fetch” data for that command)

02_data_types/data_types/data_types.c

#include <stdio.h>

int main(){

char a = 'X';
int i = 22;
float x = 3.14159265358979323846264338327;
double y = 3.14159265358979323846264338327;

// Strings in C are arrays of char
char pi[31] = "3.14159265358979323846264338327";

printf("\n");
printf("The value of character a: %c (size %d byte)\n", a, sizeof(char));
printf("The value of integer i: %d (size %d bytes)\n", i, sizeof(int));
printf("The value of float x: %.16f (size %d bytes)\n", x, sizeof(float));
printf("The value of double y: %.16f (size %d bytes)\n", y, sizeof(double));
printf("The value of pi to 29 decimal places: %s\n", pi);
printf("\n");

return 0;

}

$ cc –o data_types.exe data_types.c

$ aprun –n1 ./data_types.exe

The value of character a: X (size 1 byte)
The value of integer i: 22 (size 4 bytes)
The value of float x: 3.1415927410125732 (size 4 bytes)
The value of double y: 3.1415926535897931 (size 8 bytes)
The value of pi to 29 decimal places: 3.14159265358979323846264338327

03_loops/do_while_loop/do_while_loop.c
#include <stdio.h>

int main(){

int j = 10; // Declare j and set value to 10

/* --------------------------------------
while loop

-> Executes statements ONLY if
condition is met

---------------------------------------*/
while(j > 10 && j < 20){

printf(”while: j = %d\n", j);
j = j + 1;

}

j = 10; // Reset value of j to 10

/* --------------------------------------
do while loop

-> Executes statements at least 1 time,
even if condition is not met

---------------------------------------*/
do{

printf(”do-while: j = %d\n", j);
j = j + 1;

}while(j > 10 && j < 20);

return 0;

}

$ cc –o do_while_loop.exe do_while_loop.c

$ aprun –n1 ./while_loop.exe
do-while: j = 10
do-while: j = 11
do-while: j = 12
do-while: j = 13
do-while: j = 14
do-while: j = 15
do-while: j = 16
do-while: j = 17
do-while: j = 18
do-while: j = 19

